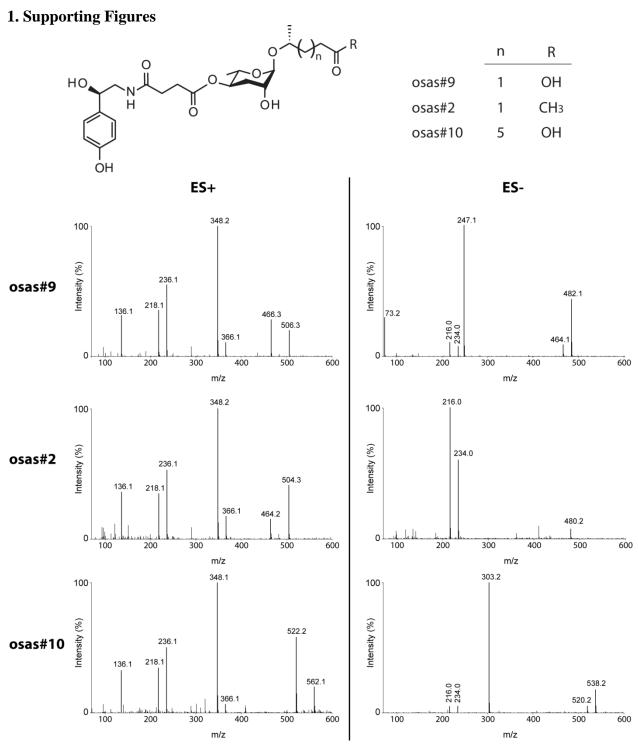
Supporting Information

Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in *C. elegans**

Alexander B. Artyukhin^{1,2}, Joshua J. Yim¹, Jagan Srinivasan³, Yevgeniy Izrayelit¹, Neelanjan Bose¹, Stephan H. von Reuss¹, Yeara Jo³, James M. Jordan⁴, L. Ryan Baugh⁴, Micheong Cheong², Paul W. Sternberg³, Leon Avery², and Frank C. Schroeder¹

¹Boyce Thompson Institute and Department of Chemistry and Chemical Biology Cornell University, Ithaca, New York 14853, USA

²Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA


³Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA

⁴Department of Biology, Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA

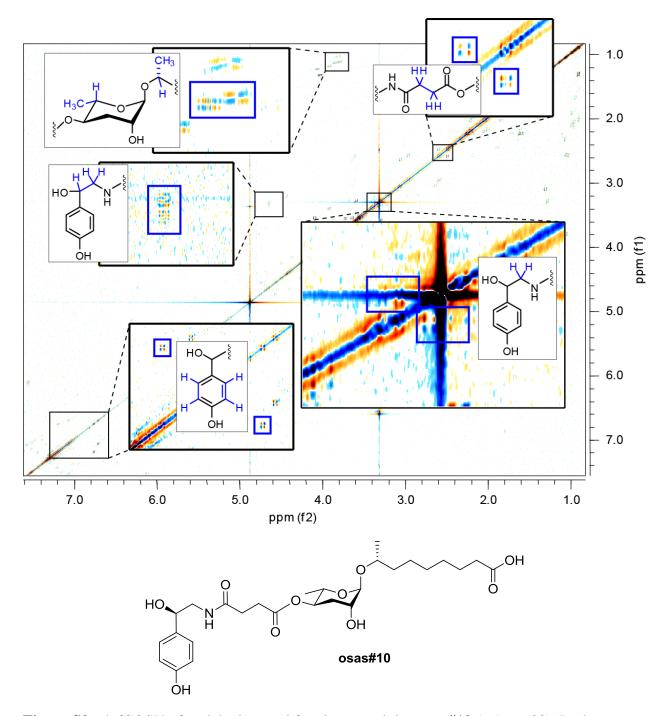
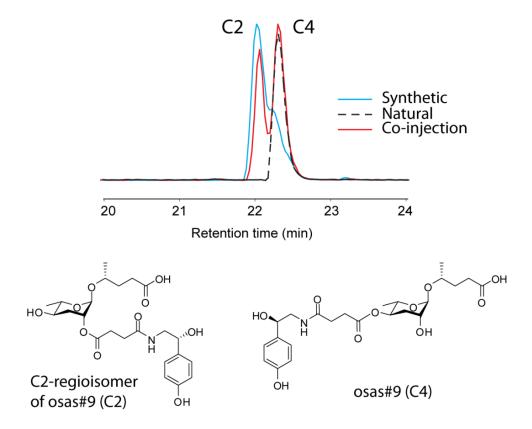
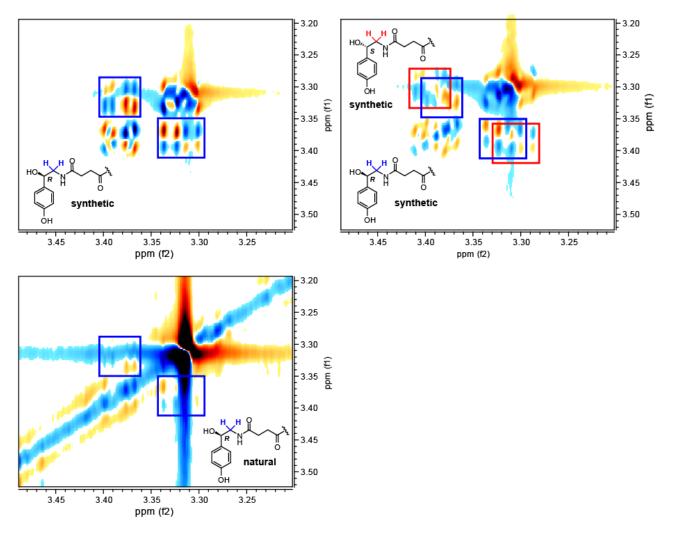
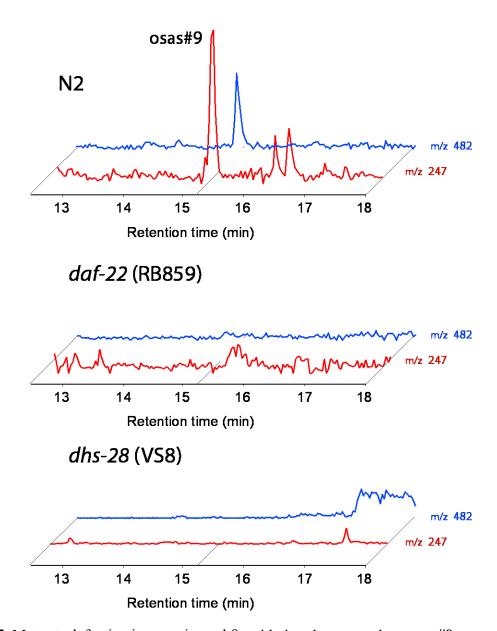
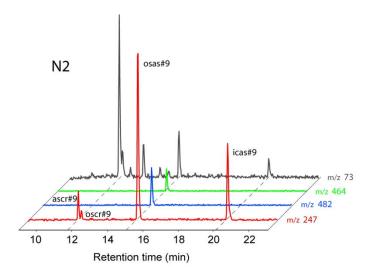

*Corresponding Author: **email:** schroeder@cornell.edu **phone**: 607-254-4391 **fax:** 607-254-2958

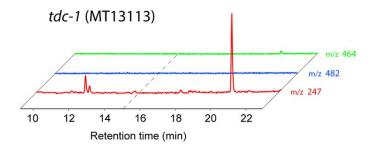
Table of Contents

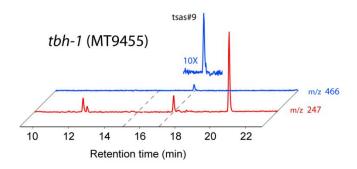

1. Supporting Figures S1-S11	S3-S12
2. Supporting Methods	S14
3. Synthesis of osas#9 and tsas#9	S15-S17
4. Synthesis of N-acetyl and N-succinyl derivatives of dopamine, octopamine, and serotonin	S18-S19
5. NMR Spectra of intermediates, osas#9, and tsas#9	S20-S29
6. References	S30

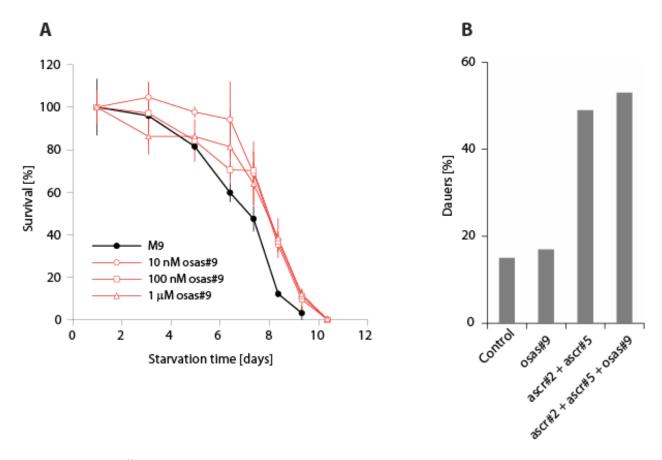

Figure S1. Electron spray ionization MS spectra of **osas#9**, **osas#2**, and **osas#10** in both positive and negative ion modes. Fragmentation in ES+ yields the same ions for all three osas ascarosides (m/z 136, 218, 236, 348, 366) resulting from fragmentation of octopamine succinyl ascarylose moiety as well as [M+H-H₂O]⁺ and [M+Na]⁺. Fragmentation of **osas#9** and **osas#10** in ES-produces **ascr#9** and **ascr#10** ions, respectively, but this fragmentation pathway is absent in **osas#2**. All three osas ascarosides also produce ions at m/z 216 and 234 in ES- resulting from octopamine succinyl moiety, in addition to molecular ions [M-H]⁻.

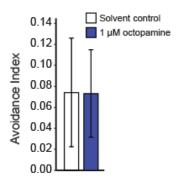

Figure S2. dqfCOSY of enriched natural fraction containing osas#10 (m/z = 538). Peaks highlighted represent specific structural features associated with this ascaroside. For stereochemical assignments, see Figure S4.

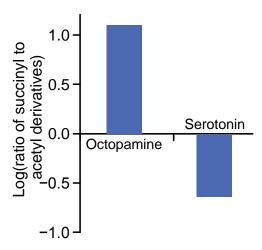

Figure S3. HPLC-MS co-injection of natural **osas#9** with two regioisomers confirms that the ascarylose ring of the natural compound is modified on the 4 position.

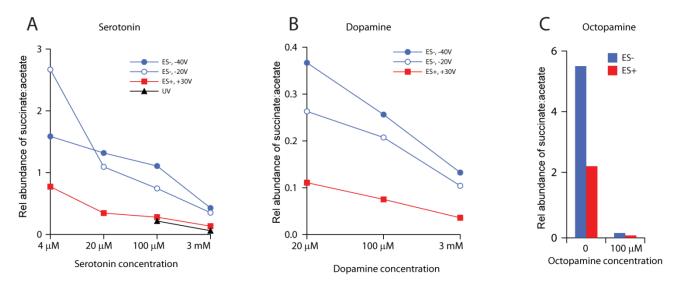



Figure S4. 2D NMR spectroscopic analysis reveals that the two **osas#9** diastereomers derived from R- and S-octopamine have different chemical shift values for the indicated methylene protons. Comparison with the spectrum of the natural sample confirms R stereochemistry.


Figure S5. Mutants defective in peroxisomal β-oxidation do not produce **osas#9**.




Figure S6. Starved L1 larvae from octopamine biosynthesis mutants still produce **icas#9** and **ascr#9** but not **osas#9**. Notably, *tbh-1* mutant strain incorporates tyramine to produce **tsas#9** (see materials and method for full characterization).


Figure S7. **osas#9** has no significant effect on L1 starvation survival (A) and dauer formation (B). Dauer formation was assessed either for **osas#9** alone or in addition to a mixture of **ascr#2** and **ascr#5**, which are known to induce dauer formation.

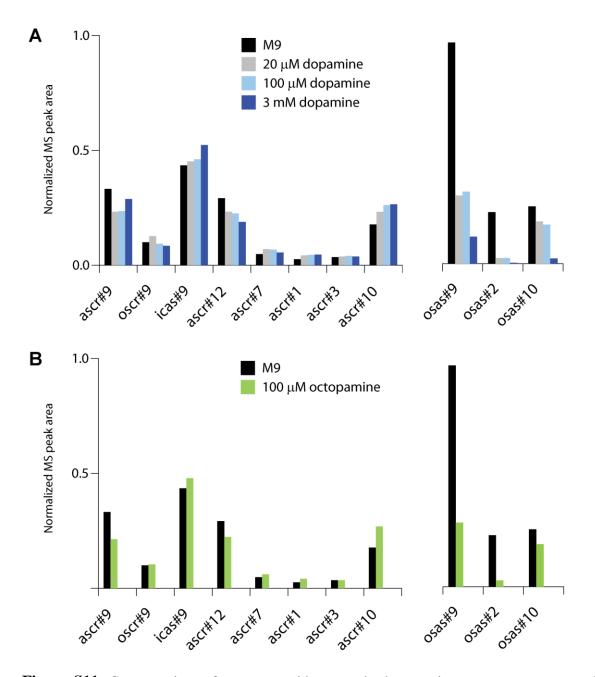

Figure S8. Octopamine does not elicit avoidance behavior in adult *C. elegans*.

Figure S9. Ratio of N-succinyl to N-acetyl derivatives of serotonin and octopamine in a worm pellet from a mixed stage wild type (N2) culture.

Figure S10. A. Ratio of N-succinyl serotonin to N-acetyl serotonin in L1 medium as a function of exogenously added serotonin. B. Ratio of N-succinyl dopamine to N-acetyl dopamine in L1 medium as a function of exogenously added dopamine. C. Ratio of N-succinyl octopamine to N-acetyl octopamine in L1 medium as a function of exogenously added octopamine.

Figure S11. Concentrations of osas ascarosides strongly decrease in response to exogenously added dopamine (A) or octopamine (B), whereas levels of all other ascarosides are only marginally affected..

2. Supporting Methods

Unless stated otherwise, reagents were purchased from Sigma-Aldrich and used without further purification. *N*,*N*-dimethylformamide (DMF), dichloromethane (DCM), and tetrahydrofuran (THF) were dried over 4 Å molecular sieves prior to use.

NMR spectra were recorded on Varian INOVA 600 (600 MHz) or Varian INOVA 500 (500 MHz) spectrometers in Cornell University's NMR facility. 1 H NMR chemical shifts are reported in ppm (δ) relative to residual solvent peaks (3.31 ppm for methanol- d_4). NMR-spectroscopic data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. 13 C NMR chemical shifts are reported in ppm (δ) relative to CH₃OH (δ 49.0) in methanol- d_4).

Optical rotations were measured on a Perkin Elmer 241 polarimeter. Solvent used for taking optical rotations (methanol) was not further purified prior to use.

Thin-layer chromatography (TLC) was performed using J. T. Baker Silica Gel IB2-F.

Flash chromatography was performed using Teledyne Isco CombiFlash systems and Teledyne Isco RediSep Rf silica columns.

Purification of synthetic **osas#9** and **tsas#9** by preparative HPLC was performed using an Agilent 1100 Series HPLC system equipped with an Agilent Eclipse XDB-C18 column (9.4 x 250 mm, 5 µm particle diameter). A 0.3% acetic acid-methanol solvent gradient was used at a flow rate of 3.6 mL/min, starting with a methanol content of 10% for 5 min which was increased to 63% over a period of 29 min. The methanol content was increased to 100% over the next 3 min and was held at 100% for 8 min.

3. Synthesis of osas#9

3.1 Synthesis of 4,4'-(((2R,3R,5R,6S)-2-(((R)-5-(benzyloxy)-5-oxopentan-2-yl)oxy)-6-methyltetrahydro-2H-pyran-3,5-diyl)bis(oxy))bis(4-oxobutanoic acid) (2):

To a solution of $\mathbf{1}^1$ (12 mg, 36 μmol) in dry dichloromethane (300 μL), succinic anhydride (15 mg, 150 μmol) in dry dimethylformamide (200 μL) was added with stirring. After 5 min, DIEA (25 μL) and 4-dimethylaminopyridine (8 mg, 65 μmol) was added and the mixture was allowed to stir. After stirring for 2 h, the reaction was quenched with sat. KHSO₄ (500 μL), extracted with ethyl acetate, dried over NaSO₄, and concentrated *in vacuo*. Flash column chromatography on silica using a gradient of 0-15% methanol in dichloromethane containing 0.25% glacial acetic acid afforded $\mathbf{2}$ (16 mg, 30 μmol, 83%) as a white powder. 1 H NMR (500 MHz, methanol- d_4): δ (ppm) 7.39-7.28 (m, 5H), 5.13 (s, 2H), 4.81-4.78 (m, 1H), 4.78-4.70 (m, 1H), 4.75 (br s, 1H), 3.88-3.80 (m, 2H), 2.73-2.46 (m, 10H), 2.12-2.05 (m, 1H), 1.96-1.79 (m, 3H), 1.15 (d, J = 6.1 Hz, 3H), 1.11 (d, J = 6.3 Hz, 3H). 13 C NMR (125 MHz, methanol- d_4): δ (ppm) 175.92, 175.88, 174.8, 173.3, 164.8, 137.6, 129.6, 129.21, 129.20, 94.6, 72.3, 72.1, 71.2, 68.2, 67.3, 33.1, 31.3, 30.25, 30.22, 30.1, 29.74, 29.72, 19.1, 18.0.

3.2 Synthesis of (*R*)-4-(2-amino-1-hydroxyethyl)phenol (3):

A solution of Pd/C (300 mg, 10%, w/w) in 8 mL methanol and 770 μ L of 1M aqueous HCl was first flushed with argon for 5 minutes and subsequently with a moderate flow of H₂ gas. To this stirring solution was added a solution 9^2 (105 mg, 390 μ mol) in 2 mL methanol. After 8 min, the reaction was filtered over a pad of silica and concentrated *in vacuo* to afford 3 (29 mg, 150 μ mol, 39%) as a white powder and used in the next step without further purification. NMR spectroscopic data was in agreement with literature values.²

3.3 Synthesis of (R)-4-(((2R,3R,5R,6S)-3,5-bis((4-(((R)-2-hydroxy-2-(4-hydroxyphenyl)ethyl)amino)-4-oxobutanoyl)oxy)-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (5):

A solution of 2 (16 mg, 30 µmol) in 500 µL dry dichloromethane was treated with 4dimethylaminopyridine (33 mg, 270 µmol) and EDC hydrochloride (34 mg, 180 µmol). After stirring for 30 minutes, 3 (17 mg, 89 µmol) in 500 µL dry dichloromethane was added to the mixture and stirred. After 3 h, the reaction was quenched with sat KHSO₄ (400 µL), extracted with ethyl acetate, dried over NaSO₄, and concentrated in vacuo. Flash column chromatography on silica using a gradient of 0-15% methanol in dichloromethane containing 0.25% glacial acetic acid afforded 5 (13.7 mg, 17 µmol, 56%) as a white powder. A solution of Pd/C (18 mg, 10%, w/w) in 500 µL methanol was first flushed with argon for 5 minutes and subsequently with a moderate flow of H2 gas. To this stirring solution was added a solution 5 (13.7 mg, 17 µmol) in 500 µL methanol. After 30 min, the reaction was filtered over a pad of silica and concentrated in vacuo to afford 7 (11.2 mg, 16 µmol, 92%) as a colorless oil and used in the next step without further purification. ¹H NMR (500 MHz, methanol- d_4): δ (ppm) 7.23-7.18 (m, 4H), 6.79-6.74 (m, 4H), 4.83-4.80 (m, 1H), 4.79-4.72 (m, 1H), 4.78 (br s, 1H), 4.68-4.63 (m, 2H), 3.96-3.89 (m, 1H), 3.89-3.82 (m, 1H), 3.41-3.31 (m, 4H), 2.66 (t, J = 6.8 Hz, 2H), 2.59 (t, J = 6.7 Hz, 2H), 2.54-2.46 (m, 4H), 2.42-2.35 (m, 2H), 2.13-2.07 (m, 1H), 1.99-1.92 (m, 1H), 1.87-1.77 (m, 2H), 1.17 (d, J=6.1 Hz, 3H), 1.16 (d, J = 6.2 Hz, 3H). ¹³C NMR (125 MHz, methanol- d_4): δ (ppm) 178.5, 173.04, 173.02, 172.1, 172.0, 156.67, 156.65, 133.22, 133.20, 127.08, 127.06, 114.66, 114.65, 93.1, 71.88, 71.84, 71.2, 70.8, 69.9, 66.8, 46.8, 46.7, 32.4, 31.0, 29.95, 29.85, 29.17, 29.15, 28.9, 17.7, 16.6.

3.4 Synthesis of (R)-4-(((2R,3R,5R,6S)-3-hydroxy-5-((4-(((R)-2-hydroxy-2-(4-hydroxyphenyl)ethyl)amino)-4-oxobutanoyl)oxy)-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (osas#9):

A solution of **7** (4.2 mg, 5.8 μmol) in THF: dioxane: H_2O (10:20:3, v/v/v, 660 μL) was stirred and heated to 65 °C. To this mixture, a solution of LiOH (56 μg) in H_2O (75 μL) was added and the reaction allowed to stir. After 1.7 h, the reaction was acidified to pH = 6 with glacial acetic acid and concentrated *in vacuo*. HPLC afforded **osas#9** (600μg, 1.2 μmol, 21%) as a white powder. ¹H NMR (600 MHz, methanol- d_4): δ (ppm) 7.21-7.18 (m, 2H), 6.78-6.74 (m, 2H), 4.88-4.84 (m, 1H), 4.68 (br s, 1H), 4.64 (dd, J = 7.8 Hz, 4.9 Hz, 1H), 3.88-3.81 (m, 2H), 3.73-3.71 (m, 1H), 3.38 (dd, J = 13.7 Hz, 5.2 Hz, 1H), 3.34-3.29 (m, 1H), 2.59 (t, J = 6.8 Hz, 2H), 2.49 (t, J = 6.8 Hz, 2H), 2.45-2.32 (m, 2H), 2.06-2.01 (m, 1H), 1.88-1.77 (m, 3H), 1.16 (d, J = 6.2, 3H), 1.14 (d, J = 6.3 Hz, 3H). ¹³C NMR (151 MHz, methanol- d_4): δ (ppm) 178.9, 174.5, 173.4, 158.1, 134.6, 128.5, 116.1, 97.4, 73.3, 71.9, 71.6, 69.4, 68.4, 48.2, 33.9, 32.9, 32.3, 31.3, 30.6, 19.0, 18.0. $\alpha_D^{20} = -45.0$ (c 0.06, methanol).

3.5. Synthesis of (R)-4-(((2R,3R,5R,6S)-3-hydroxy-5-((4-((4-hydroxyphenethyl)amino)-4-oxobutanoyl)oxy)-6-methyltetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (**tsas#9**):

tsas#9 was prepared following analogous reaction steps as for **osas#9** using **4**. ¹H NMR (500 MHz, methanol- d_4): δ (ppm) 7.05-7.01 (m, 2H), 6.72-6.69 (m, 2H), 4.88-4.84 (m, 1H), 4.68 (br s, 1H), 3.89-3.80 (m, 2H), 3.74-3.70 (m, 1H), 3.35-3.31 (m, 2H), 2.68 (t, J = 7.5 Hz, 2H), 2.59 (t, J = 6.9 Hz, 2H), 2.45 (t, J = 6.9 Hz, 2H), 2.40-2.28 (m, 2H), 2.06-2.00 (m, 1H), 1.89-1.78 (m, 3H), 1.15 (d, J = 6.2 Hz, 3H), 1.14 (d, J = 6.3 Hz, 3H). ¹³C NMR (125 MHz, methanol- d_4): δ (ppm) 180 (br), 174.1, 173.4, 156.9, 131.3, 130.7, 116.2, 97.3, 72.1, 71.6, 69.4, 68.4, 42.4, 35.7, 34.3, 33.3, 32.9, 31.4, 30.7, 19.0, 18.0.

4. Synthesis of N-acetyl octopamine, N-succinyl octopamine, and N-succinyl serotonin

4.1 Synthesis of **N-acetyl octopamine**

To a solution of **octopamine hydrochloride** (120 mg, 0.63 mmol) in water (1.1 mL), acetic anhydride (75 μ L) was added. Subsequently, sodium acetate (64 mg) was added and the reaction was stirred. After 4 h, the reaction was quenched with acetic acid (15 μ L) and the mixture was concentrated *in vacuo*. **Nacetyl octopamine** was used without further purification. ¹H NMR (500 MHz, acetone- d_6): δ (ppm) 7.21-7.17 (m, 2H), 6.80-6.76 (m, 2H), 4.66 (dd, J = 8.1 Hz, J = 4.0 Hz, 1H), 3.44 (dd, J = 13.6 Hz, J = 4.0 Hz, 1H), 3.22 (dd, J = 13.6 Hz, J = 8.1 Hz, 1H), 1.90 (s, 3H). ¹³C NMR (125 MHz, acetone- d_6): δ (ppm) 171.3, 157.4, 135.0, 128.0 (2C), 154.6 (2C), 73.2, 48.4, 22.7.

4.2 Synthesis of N-acetyl dopamine

To a solution of **dopamine hydrochloride** (105 mg, 0.55 mmol) in water (1.0 mL), acetic anhydride (80 μ L) was added. Subsequently, sodium acetate (60 mg) was added and the reaction was stirred. After 4 h, the reaction was quenched with acetic acid (15 μ L) and the mixture was concentrated *in vacuo*. **N-acetyl dopamine** was used without further purification. NMR spectroscopic data of **N-acetyl dopamine** was in agreement with literature values.³

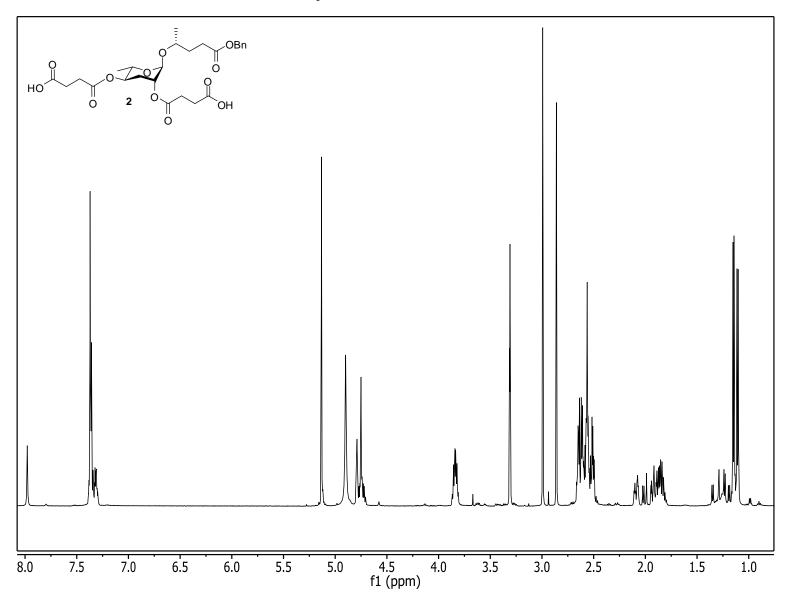
4.3 N-acetyl serotonin

N-acetyl serotonin was purchased from Sigma Aldrich.

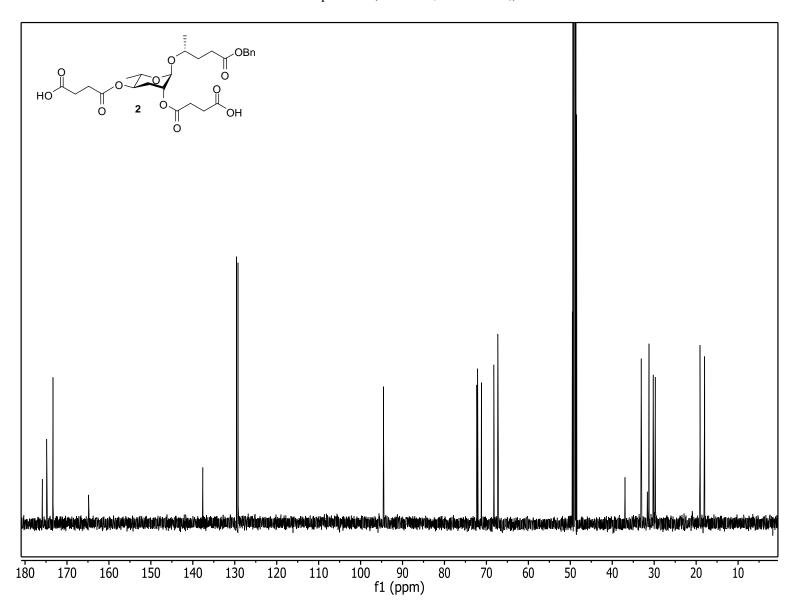
4.4 Synthesis of **N-succinyl octopamine**

To a solution of **octopamine hydrochloride** (570 mg, 3 mmol) in DCM (3 mL) and DMF (1 mL) and DIEA (1.4 mL), succinic anhydride (270 mg, 2.7 mmol) in DMF (2 mL) was added at 0 °C with stirring. After stirring for 7 h, the reaction was quenched with K_2CO_3 (140 mg) in H_2O (200 μ L) and 1.8 mL acetic acid, and concentrated *in vacuo*. Flash column chromatography on silica using a gradient of 0-30% methanol in dichloromethane containing 0.25% glacial acetic acid afforded **N-succinyl octopamine** (630 mg, 2.5 mmol, 83%). H NMR (500 MHz, methanol- d_4): δ (ppm) 7.22-7.17 (m, 2H), 6.78-6.73 (m, 2H), 4.65 (dd, J = 7.9 Hz, J = 4.9 Hz, 1H), 3.39, (dd, J = 13.6 Hz, J = 4.9 Hz, 1H), 3.31, (dd, J = 13.6 Hz, J = 7.9 Hz, 1H), 2.59-2.53 (m, 2H), 2.49-2.43 (m, 2H). C NMR (125 MHz, methanol- d_4): δ (ppm) 176.7, 174.9, 158.0, 134.6, 128.4 (2C), 116.1 (2C), 73.3, 48.2, 31.7, 30.6.

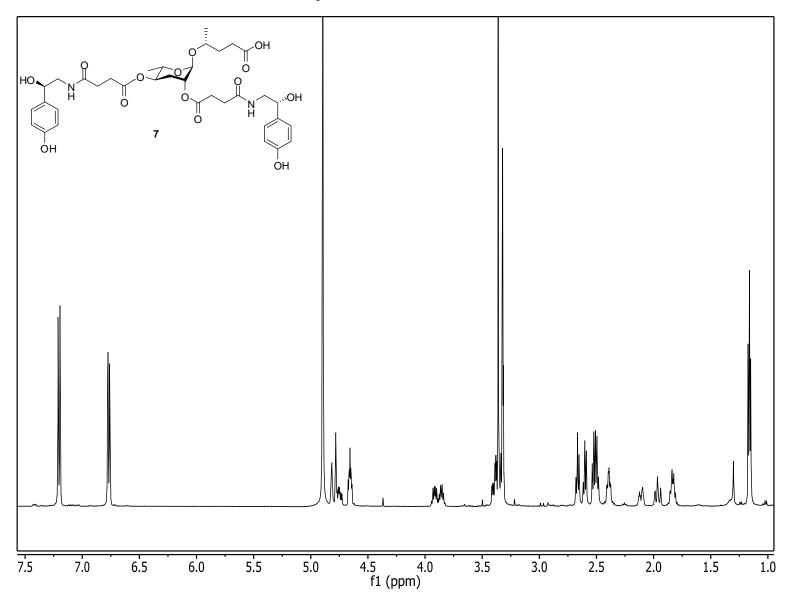
4.5 Synthesis of N-succinyl dopamine

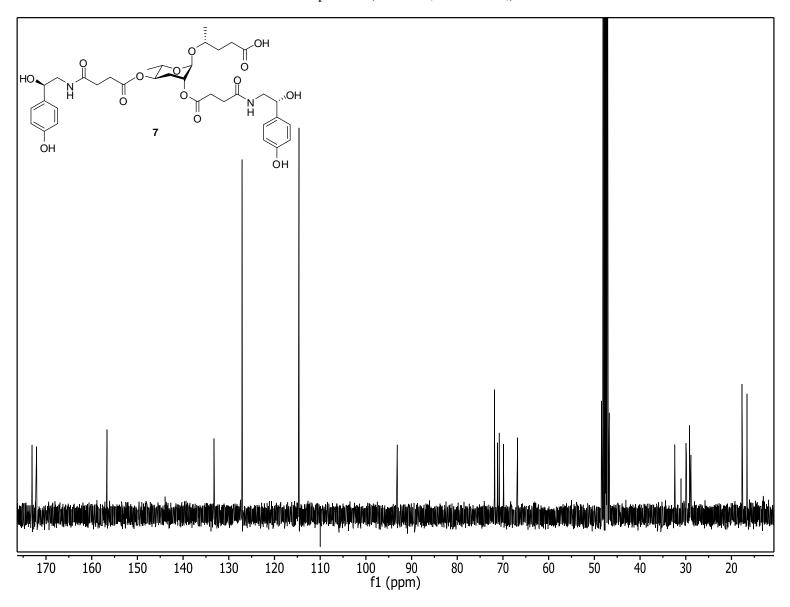

To a solution of **dopamine hydrochloride** (10 mg, 53 μ mol) in DCM (300 μ L) and DMF (100 μ L) and DIEA (15 μ L), succinic anhydride (5 mg, 50 μ mol) in DMF (100 μ L) was added at 0 °C with stirring. After stirring for 30 min, the reaction was concentrated *in vacuo* and used without further purification. NMR spectroscopic data of **N-succinyl dopamine** was in agreement with literature values.⁴

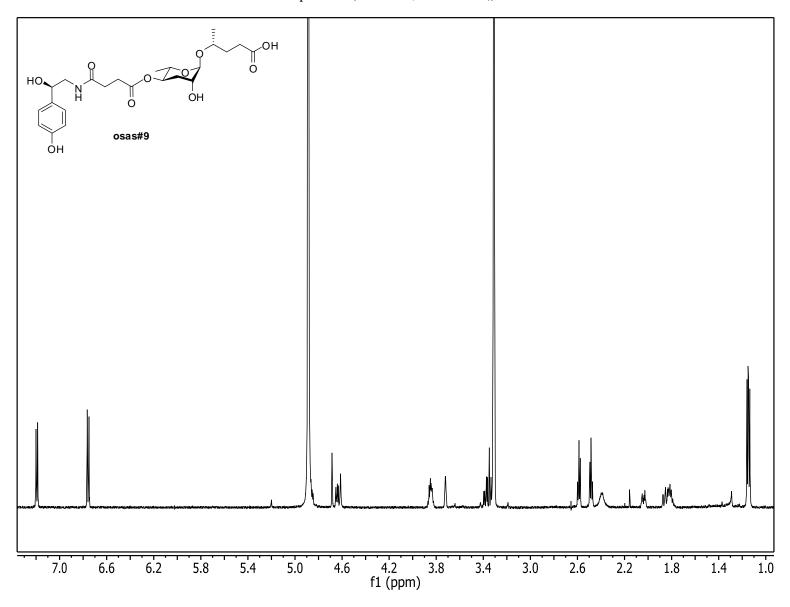
4.6 Synthesis of N-succinyl serotonin

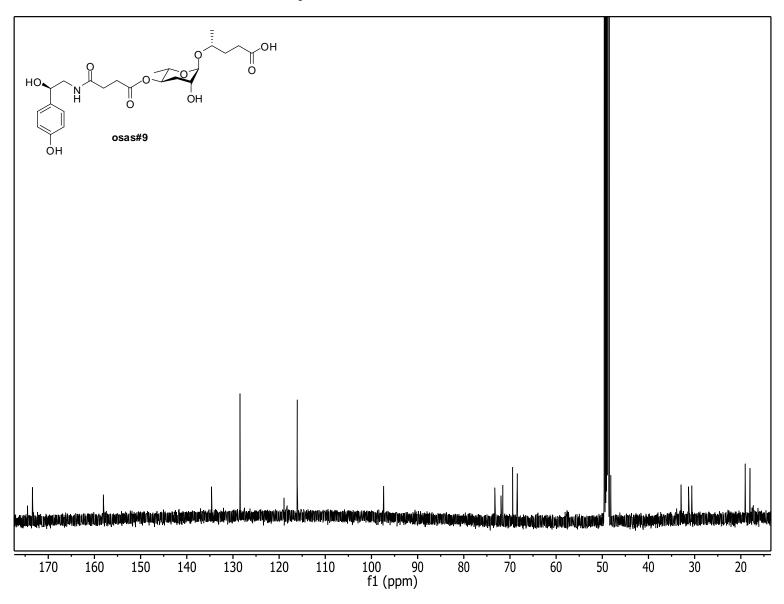

To a solution of **serotonin hydrochloride** (10 mg, 47 μ mol) in DCM (300 μ L) and DMF (100 μ L) and DIEA (18 μ L), succinic anhydride (6 mg, 60 μ mol) in DMF (100 μ L) was added at 0 °C with stirring. After stirring for 30 min, the reaction was concentrated *in vacuo* and used without further purification. NMR spectroscopic data of **N-succinyl serotonin** was in agreement with literature values.⁵

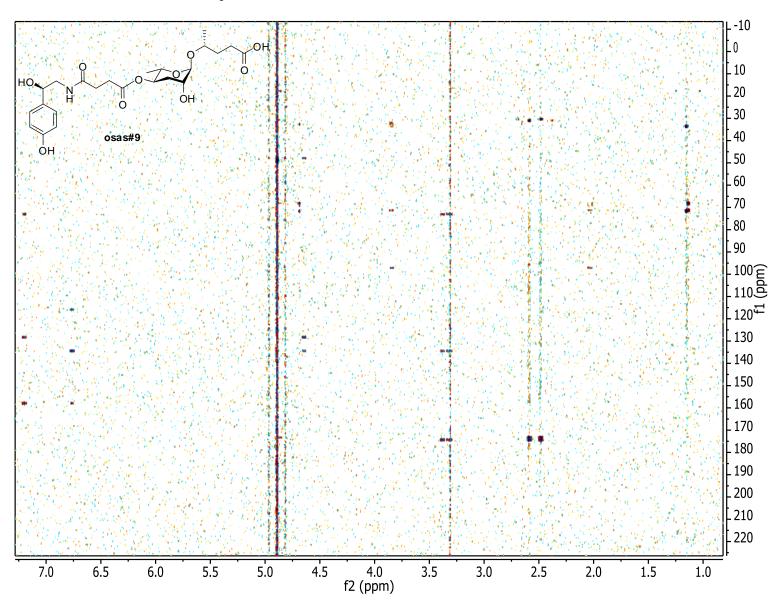
 ${\bf 5.~NMR~Spectra~of~intermediates,\,osas\#9,\,and~tsas\#9}$


¹H NMR Spectrum (500 MHz, methanol-*d*₄) of **2**

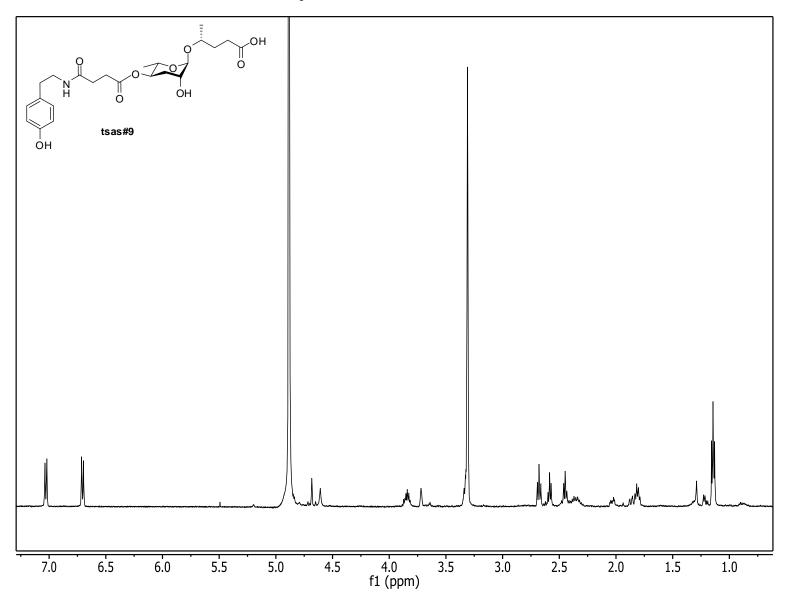

 13 C NMR Spectrum (125 MHz, methanol- d_4) of **2**


¹H NMR Spectrum (500 MHz, methanol-*d*₄) of **5**

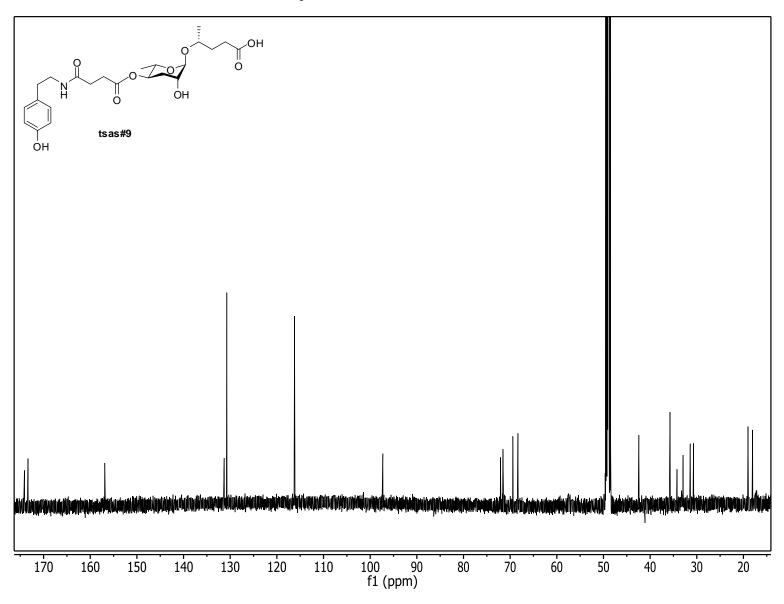

 13 C NMR Spectrum (125 MHz, methanol- d_4) of **5**



¹H NMR Spectrum (600 MHz, methanol-*d*₄) of **osas#9**



 13 C NMR Spectrum (125 MHz, methanol- d_4) of **osas#9**



 1 H NMR Spectrum (500 MHz, methanol- d_{4}) of **tsas#9**

 13 C NMR Spectrum (125 MHz, methanol- d_4) of **tsas#9**

5. References

- (1) von Reuss, S. H., Bose, N., Srinivasan, J., Yim, J. J., Judkins, J. C., Sternberg, P. W., and Schroeder, F. C. (2012) *J Am Chem Soc* **134**, 1817–1824
- (2) Cho, B. T., Kang, S.K., and Shin, H.S. (2002) Tetrehedron-Asymmetry 13, 1209-1217
- (3) Jerhot, E., Stoltz, Jeffrey A., Andrade, Maydianne C. B. and Schulz, S. (2010) *Angew Chem Int Ed* **49**, 2037–2040
- (4) Dalpiaz, A., Cacciari, B., Vicentini, C. B., Bortolotti, F., Spalluto, G., Federico, S., Pavan, B., Vincenzi, F., Borea, P. A., and Varani, K. (2012) *Mol Pharmaceutics* **9**, 591-604
- (5) Takahashi, T. and Miyazawa, M. (2011) Bioorg Med Chem Lett 21, 1983 1986